HashMap

底层使用数组+链表+红黑树来实现

HashMap节点如下:

static class Node<K,V> implements Map.Entry<K,V> {
   final int hash;
   final K key;
   V value;
   Node<K,V> next;
}

Node是一个内部类,这里的key为键,value为值,next指向下一个元素,可以看出HashMap中的元素不是一个单纯的键值对,还包含下一个元素的引用。

数组的特点:查询效率高,插入,删除效率低。

链表的特点:查询效率低,插入删除效率高。

在HashMap底层使用数组加(链表或红黑树)的结构完美的解决了数组和链表的问题,使得查询和插入,删除的效率都很高。

java1.7 之前是数组+链表 ,之后是 数组+链表+红黑树(Ologn)

重点——HashMap存储元素的过程:

HashMap使用put方法储存元素,我们都知道Object中有public native int hashCode();方法来计算hashcode值,通过计算Key的哈希值(注意此处为位运算)对整体数组长度(初始长度为16,也是为了方便位运算,提高计算速度)进行取模操作,当产生哈希冲突时,会在当前位置使用链表来储存数据,当一个位置的哈希冲突过高,链表长度过长,进而影响了查询效率时,(当链表长度大于等于8,并且数组长度大于等于64时,)HashMap会采用数组+链表+红黑树来进行储存数据。

重点——HashMap的扩容过程:

HashMap中有两个重要的参数:初始容量大小和加载因子,初始容量大小是创建时给数组分配的容量大小,默认值为16,加载因子默认0.75f,用数组容量大小乘以加载因子得到一个值,一旦数组中存储的元素个数超过该值就会调用rehash方法将数组容量增加到原来的两倍,专业术语叫做扩容。

在做扩容的时候会生成一个新的数组,原来的所有数据需要重新计算哈希码值重新分配到新的数组,所以扩容的操作非常消耗性能。

jdk1.7会把原来数组的中元素的哈希值重新对新数组长度取模一次,然后存放到新数组中

jdk1.8会把哈希值与旧数组长度进行位运算,如果算出来小于旧数组长度,那么就会认为是低位,直接复制位置。如果等于旧数组长度,就会认为是高位,会把这个元素放到新数组的原位置+旧数组长度的位置。

HashMap线程不安全:

当多线程对同一个HashMap进行put操作时,会导致哈希冲突相关线程不安全问题,而CurrentHashMap就要好的多:

CurrentHashMap

为了应对hashmap在并发环境下不安全而诞生的,ConcurrentHashMap的设计与实现非常精巧,大量的利用了volatile,final,CAS等lock-free技术来减少锁竞争对于性能的影响。

ConcurrentHashMap避免了对全局加锁改成了局部加锁操作,这样就极大地提高了并发环境下的操作速度,由于ConcurrentHashMap在JDK1.7和1.8中的实现非常不同,接下来我们谈谈JDK在1.7和1.8中的区别。

在JDK1.7中ConcurrentHashMap采用了数组+Segment+分段锁的方式实现

Segment(分段锁)-减少锁的粒度

ConcurrentHashMap中的分段锁称为Segment,它即类似于HashMap的结构,即内部拥有一个Entry数组,数组中的每个元素又是一个链表,同时又是一个ReentrantLock(Segment继承了ReentrantLock)。

ConcurrentHashMap使用分段锁技术,将数据分成一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据的时候,其他段的数据也能被其他线程访问,能够实现真正的并发访问。

JDK1.8版本的CurrentHashMap的实现原理

JDK8中ConcurrentHashMap参考了JDK8 HashMap的实现,采用了数组+链表+红黑树的实现方式来设计,内部大量采用CAS操作,这里我简要介绍下CAS。

CAS是compare and swap的缩写,即我们所说的比较交换。cas是一种基于锁的操作,而且是乐观锁。在java中锁分为乐观锁和悲观锁。悲观锁是将资源锁住,等一个之前获得锁的线程释放锁之后,下一个线程才可以访问。而乐观锁采取了一种宽泛的态度,通过某种方式不加锁来处理资源,比如通过给记录加version来获取数据,性能较悲观锁有很大的提高。

CAS 操作包含三个操作数 —— 内存位置(V)、预期原值(A)和新值(B)。如果内存地址里面的值和A的值是一样的,那么就将内存里面的值更新成B。CAS是通过无限循环来获取数据的,如果在第一轮循环中,a线程获取地址里面的值被b线程修改了,那么a线程需要自旋,到下次循环才有可能机会执行。

JDK8中彻底放弃了Segment转而采用的是Node,其设计思想也不再是JDK1.7中的分段锁思想。

Node:保存key,value及key的hash值的数据结构。其中value和next都用volatile修饰,保证并发的可见性。

class Node<K,V> implements Map.Entry<K,V> {
    final int hash;
    final K key;
    volatile V val;
    volatile Node<K,V> next;
    //... 省略部分代码
}

总结

其实可以看出JDK1.8版本的ConcurrentHashMap的数据结构已经接近HashMap,相对而言,ConcurrentHashMap只是增加了同步的操作来控制并发,从JDK1.7版本的ReentrantLock+Segment+HashEntry,到JDK1.8版本中synchronized+CAS+HashEntry+红黑树。

1.数据结构:取消了Segment分段锁的数据结构,取而代之的是数组+链表+红黑树的结构。

2.保证线程安全机制:JDK1.7采用segment的分段锁机制实现线程安全,其中segment继承自ReentrantLock。JDK1.8采用CAS+Synchronized保证线程安全。

3.锁的粒度:原来是对需要进行数据操作的Segment加锁,现调整为对每个数组元素加锁(Node)。

4.链表转化为红黑树: 定位结点的hash算法简化会带来弊端,Hash冲突加剧,因此在链表节点数量大于8时,会将链表转化为红黑树进行存储。

5.查询时间复杂度:从原来的遍历链表O(n),变成遍历红黑树O(logN)。